

Why comparing handwriting and keyboard typing?

- handwriting is largely automated in adults
- frequent obligation to keyboard use for students
- touch-typing method mastery not obligatory
- different motor patterns:
 - hand: different trajectories and acceleration patterns of letters
 - keyboard: similar movements but different spatial targets
- in case of little automation: low-level processes interfere with planning

What is interesting about copying?

- different processes involved depending on strategy
 - grapho-motoric execution
 - reading/recognizing linguistic symbols
 - reading/understanding words
 - memorizing (sequences of) patterns/letters/words/phrases
 - orthographical realization
 - coordinating input and output units ("eye and pen" task)
 - monitoring for correctness and completeness
 - no planning and formulating needed

Copying in the context of writing tasks

- cognition-transforming writing
 - narration (to make the reader experience something)
 - description (to make the reader know something)
 - instruction (to enable the reader to do something)
 - argumentation (to make the reader believe something)
- inter-textual writing
 - copying
 - excerpting
 - paraphrazing
 - summarizing
 - quoting
 - commenting/criticizing
 - translating

Disclaimer

- The issue is solely on different means of generating graphical traces; we are not concerned with text processing software, spell-checkers etc.
- However: The virtual-visual trace produced by keyboard and screen creates qualitatively different possibilities for correction and revision.

Methodology

- handwriting
 - camera from above and full-angle view
 - split-screen record
 - keeping the writing situation as natural as possible (→ comparability with school research)
- typing
 - keystroke logging (ScriptLog)
 - camera full-angle view
 - no mouse
 - no formal editing

Baseline handwriting and typing

- n = 30 university students
- copying a well-known nursery rhyme 12x: Alle meine Entchen schwimmen auf dem See.
- handwriting: M = 150 strokes/min (min 87; max 214)
- typing: M = 199 strokes/min (min 118; max 294 within words: M = 324 strokes/min (min 176; max 500)
- typing saves about 12 per cent of time
- correlations handwriting keyboard
 - speed handwriting total time keyboard: r = .41
 - speed handwriting typing speed within words: r = .39

Components of keyboard mastery

- measures of keyboard operation
 - (1) total time on task
 - (2) deviation from the correct number of characters in final text (→ correctness)
 - (3) number of linear keystrokes
 - (4) number of deleting operations (→ precision)
 - (5) number of cursor movements (→ revision)
 - (6) mean transition time within words (writing fluency in a narrower sense)
 - (7) time per keystroke (→ general keyboard mastery)
 - (8) keyboard efficiency (linear keystrokes / characters in final text)

Factor analysis of keyboard measures

- keyboard operation measures reflect different partial abilities
- clear simple structure of factor loads
- 3-factor solution (87,9% cumulated variance explained
 - keyboard efficiency 40,6% (main variable: efficiency)
 - writing speed 33,1% (main variable: time per keystroke)
 - typing precision 14,1% (main variables: characters in final text, deletes)
- even copying comprises of distinguishable ability components

A copying experiment

- 2 × 2 × 2 design
 - copying a German or Finnish text (1170 characters each) (= comprehension-oriented vs. letter-oriented strategy)
 - one by hand, one on the keyboard
 - systematic variation of task order
- main results
 - Finnish text takes longer in both modalities
 - handwriting and keyboard speed equal in both modalities
 - more mistakes in the keyboard condition
 - more mistakes for Finnish text only in keyboard condition
 - characters per gaze to original: handwriting 5,0 Finnish 20,6 German keyboard 7,0 Finnish 16,7 German
 - overall small efficiency advantage for handwriting

A replication study

- n = 32 university students
- performing on three keyboard tasks
 - baseline 12x nursery rhyme
 - copying a 1170 characters text
 - free route description
- factor-analysing 8 keyboard operation measures

Some descriptive results (copying a 1170 characters German text)

variable	min	max	М	sd
total time	166,99	632,91	411,69	97,39
edited chrs.	1061	1183	1160,22	26,58
keystrokes	1109	2021	1375,5	218,52
deletes	2	114	42,22	26,51
cursor move	0	718	113,38	175,59
t transition	.140	.240	.18	.29
t / keystroke	.14	.44	.30	.07
effiency	58%	99%	86%	11%

Factor analyses

- copying from memory (nursery rhyme)
 - 2 factors (cumulative explanation of 77,2%)
 - keyboard activity/efficiency (47,4% explained)
 - speed (29,8% explained)
- copying from text
 - 3 factors (cumulative explanation 84,8%)
 - keyboard activity/efficiency (45,5% explained)
 - speed (26,7% explained)
 - precision (12,6% explained)
- text production
 - 3 factors (cumulative explanation 89,3%)
 - amount (42,2% explained)
 - efficiency (25,9% explained)
 - speed (21,3% explained)

Discussion and implications

- the typing even of experienced and successful students is not as fast and precise as it could be
- in direct comparison still a small advantage of handwriting
- it matters whether handwriting or typing is used, particular when it comes to tasks more complex than copying
- typing skills comprise of more than mastering or not a touch-typing method
- typing speed and keyboard efficiency are two mutually independent sources of variation

Practical implications

- if keyboard use is not yet automated: draft by hand
- teaching keyboard proficiency is more than (or even different from) touch-typing training
- revision may be due to keyboard operation
- separate editing from planning
- switch spell-checker off